
Lights and Materials in OpenGL

This material is not difficult, but the documentation for it is rather scattered and not well-

explained. I’ll try to gather the most important information here.

Lights. The idea here is that you first enable lighting in general, then you enable specific lights

and given them properties. OpenGL numbers the lights as GL_LIGHT0, GL_LIGHT1, and so

forth.

There are three kinds of lights in OpenGL:

 directional lights, have direction but no position (or are infinitely far away)

 point lights have a specific location in space

 spot lights have a location and emit light in a cone from this position.

The differences between these depend upon which properties we set for a particular light.

We enable lighting with the single line

 gl.glEnable(GL2.GL_LIGHTING);

Once you have enabled lighting, calls to glColor no longer have any effect and you need to set

material properties for each surface.

We turn on light#i with gl.glEnable(GL2.GL_LIGHTi), as in

 gl.glEnable(GL2.GL_LIGHT0) ;

Light0 has different default properties than the other lights, but I suggest that you ignore the

defaults and set any properties you want to use.

The properties of a light are its ambient, diffuse and specular components, its position, direction,

and the two spotlight properties: spot_direction, and spot_cutoff. All of these are set with the

gl.glLightf() and gl.glLightfv() functions. Use gl.glLightfv() when the parameter being set

needs a vector value; glLightf() when it needs a single float. They take the forms

 gl.glLight f (light # , propert y, value) ;

 gl.glLight fv(light # , propert y, array, 0) ;

The last argument on glLightfv is an offset for where to start in the array; you will probably

alway make that 0. The light# is GL2.GL_LIGHT0, GL2.GL_LIGHT1, and so forth. The

properties are GL2.GL_AMBIENT, GL2.GL_DIFFUSE, GL2.GL_SPECULAR,

GL2.GL_POSITION, GL2.GL_SPOT_DIRECTION, and GL2.GL_SPOT_CUTOFF. (Note that

there is no parameter for directional lights; we’ll get to that momentarily.)

For example, we can set the diffuse color of a light #2 to yellow with

 f loat [] yellow = {1 , 1 , 0 , 1 } ;

 gl.glLight fv(GL2.GL_LIGHT2, GL2.GL_DIFFUSE, yellow, 0) ;

2

You should use rgba format for light colors with the alpha channel set to 1.

For point lights you should set the ambient, diffuse and specular components of the light and the

light’s position. Positions are specified in homogeneous coordinates (i.e, 4 coordinates with the

4
th

 component 1). For a directional light set the GL_POSITION property, with the 4
th

component of the position being 0; this is a signal to OpenGL to treat this as a direction rather

than a position. For a spot light, set GL_SPOT_DIRECTION to a 3D vector and

GL_SPOT_CUTOFF to an angle that represents the aperture of the cone of light; for this use

glLightf() since you are setting a single float and not a vector.

For example, the following code would create single white point light at position (30, 2, 5):

 public void init (GLAut oDrawable drawable) {

 <st art up for OpenGL omit t ed?

 f loat [] whit e = {1 , 1 , 1 , 1 } ;

 f loat [] none = {0 , 0 , 0 , 1 } ;

 f loat [] pos = {30 , 2 , 5 , 1 } ;

 gl.glEnable(GGL2.GL_LIGHTING);

 gl.glEnable(GL2.GL_LIGHT0) ;

 gl.glLight fv(GL2.GL_LIGHT0, GL2.GL_AMBIENT, none, 0) ;

 gl.glLight fv(GL2.GL_LIGHT0, GL2.GL_DIFFUSE, whit e, 0) ;

 gl.glLight fv(GL2.GL_LIGHT0, GL2.GL_SPECULAR, whit e, 0) ;

 gl.glLight fv(GL2.GL_LIGHT0, GL2.GL_POSITION, pos, 0)

 <rest of init ializat ion code omit t ed>

Materials. The current surface material is part of the OpenGL state. We create a material and

that is assigned to each piece of geometry we create until a new material is created. We do this

by setting the ambient, diffuse and specular properties of the surface. There is also a shininess

property that is related to the Phong exponent used in the specular reflection calculation. You

can also have surfaces emit light; this is added to the light reflected by the surface, but isn’t used

in the light reflection model for any other surface.

The glMaterialf() and glMaterialfv() functions set the material properties. Both of these require

you to specify whether you are setting the properties for the front or the back of the surface.

There is a story here. The default lighting model only works with the front of a surface, so the

back attributes are ignored. It is possible to switch to a 2-sided lighting model, which will allow

the front and back surfaces to be different. I’m not going to deal with that here, but you still

need to specify that you are working with the front of the surface. A typical parameter is

3

 gl.glMat erialfv(GL2.GL_FRONT, GL2.GL_DIFFUSE, color, 0) ;

where color is an array of 4 color components. As with lighting, the 3 color properties are

GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR. The shininess property is

GL_SHININESS and you set it with glMaterialf(), since its value is a single float, as in

 gl.glMat erialf (GL2.GL_FRONT, GL2.GL_SHININESS, 32.0) ;

The light reflection model requires a normal vector; this needs to be specified explicitly. You

might expect OpenGL to calculate a surface normal from a cross-product of edges, but this is not

done. The front face of a surface is the face you would see if you were standing at the head of

the normal vector looking back at the tail. The default normal vector is <0, 0, 1>, regardless of

how your geometry is defined. Like surface materials, the normal is part of the OpenGL state – a

normal stays in effect until you specify a new one, and the current normal is attached to

geometry when it is created. You set the normal with either

 gl.glNormal3f (a, b, c)

or

 gl.glNormal3fv(vec, 0)

where vec is an array wit h 3 component s. For example, you make the normal point in

the direction of the x-axis with either

 glNormal3f (1 , 0 , 0)

or

 f loat [] norm = {1 , 0 , 0 } ;

 gl.glNormal3fv(norm, 0)

Normals are created automatically for quadrics, but you should specify whether you want the

outward-pointing normal or the inward-pointing normal. If quad is a pointer to a quadric object,

then

 glu.gluQuadricOrient at ion(quad, GLU.GLU_OUTSIDE) ;

selects the outward-pointing normal and

 gu.gluQuadricOrient at ion(quad, GLUGLU_INSIDE) ;

reverses the normal to make inward-pointing normals. You need this if, for example, you want

to have a scene inside a sphere or cylinder.

4

See the following demo programs:

 Gouraud.py

 Spot.py

 ThreePlanes.py

 Sphere.py

 Cylinder.py

